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Abstract—Near-field reconfigurable intelligent surfaces (RISs)
are unlocking promising potentials for the next generation of
communications. Different from prior works that separately
address phase shifts with errors and phase-dependent amplitudes
(PDAs) in the RIS pixel hardware, this paper jointly studies
power losses (PLs) caused by these two impairment factors. We
propose three different pixel reflection models to accommodate
different practical scenarios and derive their approximated upper
bounds on the PL. It is important to note that neglecting
uncertainties in the PDA may lead to an overestimation of the
performance improvement offered by the RIS, thereby explaining
the discrepancy between analytical and measurement results
in several previous studies. Numerical simulations verify the
correctness of the theoretical results.

Index Terms—Reconfigurable intelligent surface, near-field
communication, phase-dependent amplitude, power loss, phase
error

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) hold significant
potential to revolutionize wireless communication technolo-
gies [1]. Traditional investigations on the RIS have predomi-
nantly concentrated on far-field (FF) scenarios [2], which are
suitable for long transmission distances. Recently, however, the
RIS deployed in near-field (NF) environments has exhibited
distinct advantages over alternative transmission enhancement
methodologies [3]. The NF RIS not only amplifies the number
of reflective pixels but also induces a substantial transfor-
mation in electromagnetic characteristics, thereby enhancing
spectral efficiency (SE) and spatial degrees of freedom [4].

It should be noted that we cannot consider every pixel of
the NF RIS as identical, since each pixel possesses its unique
transmission angle and distance [3], [4]. Consequently, the
hardware characteristics of each NF RIS pixel must be indi-
vidually taken into account. Moreover, in practical scenarios,
phase errors (PEs) within the RIS cannot be overlooked [5].
Previous studies [5]–[7] primarily focused on phase shift with
errors (PSEs), represented as1 exp(−(φ+δ)) where φ denotes
a controlled phase shift, δ represents the PE following specific
distributions, exp(⋅) is exponential function, and  ≜

√
−1.

However, the actual pixel reflection coefficient exhibits its own
phase-dependent amplitudes (PDAs) [8]–[11], which can be
expressed as β(φ + δ) with β(⋅) ∈ (0,1] being a nonlinear
function. Therefore, the focus of this paper is to explore How

1If φ is optimally continuous, exp(−(φ + δ)) is equivalent to exp(−δ)
since the phase of the cascade path and φ cancel each other out. [2].

do the PSE and the PDA (with/without the PE) jointly affect
the system performance?

Given the background mentioned above, the motivation for
this paper is summarized in Table I. In particular, although
many previous works have explored the impacts of the PSE
and/or the PDA (without the PE) on the RIS-aided system
[4]–[13], there is no research on the mutual coupling of these
two attenuation factors, especially when the PDA contains
the PE. It should be emphasized that the pixel hardware is
increasingly vulnerable as it incorporates sophisticated tuning,
control, and sensing systems [14]. For example, varactor
diodes in Fig. 1 may produce high current densities, potentially
causing electromigration within the device [15]. Thus, from a
practical perspective, the PDA may also exist the PE. It is
noteworthy that this omission may be pivotal in accounting
for the disparity between theoretical analyses and hardware
validations [16]. Therefore, different from the existing FF pixel
reflection models (i.e., Perfect, Cases I and II in Table I), a
more practical NF model (i.e., Case III in Table I) is imperative
for future performance analyses and algorithm designs for the
RIS-assisted system.

Model Works PSE PDA
Perfect [4], [12], [13] exp(−φ) 1
Case I [5]–[7] exp(−(φ + δ)) β ∈ (0,1]
Case II [8]–[11] exp(−(φ + δ)) β(φ) ∈ (0,1]
Case III This paper exp(−(φ + δ)) β(φ + δ) ∈ (0,1]

TABLE I: Related works with different pixel reflection models.

In this paper, our contributions are as follows:
● We initially showcase the hardware configuration of the

RIS pixel, followed by an investigation of the impact of
different parameters on the approximated PDA model.
Then, we derive the lower and upper bounds of the ideal
PDA without any PEs.

● Second, we introduce a useful metric named power loss
(PL) to assess the energy conservation of each RIS pixel.
Then, three different pixel reflection models are proposed
to accommodate distinct practical scenarios, and new
approximated polynomial form upper bounds on the PL
are also derived.

● Third, based on the Friis transmission formula and the
proposed complete/incomplete reflection models, a new
light-of-sight (LoS) NF channel model, is derived. We
confirm its effectiveness through numerical assessments.



The rest of the paper is organized as follows. Sec. II
introduces the pixel hardware structure and its approximated
PDA. Then, in Sec. III, three different pixel reflection models
and their upper bounds on the PL are proposed. Channel model
and simulation results are provided in Sec. IV. We finally
conclude this work in Sec. V.

Notation: ∣ ⋅ ∣ denotes absolute value, ∥ ⋅ ∥ is l2 norm, [⋅]T is
transpose operation. Besides, sin(⋅) and cos(⋅) are respectively
sine and cosine functions. Moreover, CN , UF , and E{⋅}
represent complex Gaussian distribution, uniform distribution,
expectation function, respectively.

II. PHASE-DEPENDED AMPLITUDES IN RIS PIXELS

In this section, we start by elucidating the hardware con-
figuration of the RIS pixel. Henceforth, an examination of the
approximated PDA is studied.

Fig. 1: Top view schematic of the RIS pixel and its simplified
equivalent circuit model.

A typical RIS pixel hardware contains three layers [16]. As
shown in Fig. 1, the top layer contains two pairs of copper
patches, each of which is connected by a varactor diode.
The middle layer is a complete metallic panel, for reflecting
incoming waves and preventing energy loss, and the bottom
layer consists of direct current biasing lines. A single pixel
can be modeled as a parallel resonant circuit.

Fig. 2: A downlink cascaded path of the m-th pixel.

Fig. 2 illustrates a downlink cascaded path of the RIS-aided
communication. If the RIS as M pixels, and m = 1, . . . ,M ,
then PAP, PAP→m, Pm, and Pm→User denote the transmit
power by the AP, the received power by the m-th pixel, the
reflected power by the m-th pixel, and the received power by
the user. Note that PAP→m ≥ Pm since there always exists
energy loss when the pixel reflects the wave [1]. In particular,

for the m-th pixel, an ideal equivalent low-pass receiver power
can be obtained as

Pm = ∣β(φm) exp(−φm)∣2PAP→m, (1)

where β(φm) is the m-th PDA of the pixel and φm is the
desired pixel phase shift.

Most previous works ignored the amplitude β(φm) or
simply assumed it is a constant smaller or equal one [4]–[7],
[12], [13]. This makes sense if we consider the FF scenario
and each pixel works in the same behavior. However, if the
transceiver and the RIS in the near field, the pixel has its
own feature. In other words, given the different transmission
distances between the pixels and the transceiver, we have to
not only consider the different phases but also the different
distances and other unique characteristics such as the PDA of
each scatterer. Let ςm represent the equivalent circuit, then [8]
introduced an amplitude model as

β(φm) = (1 − b) ⋅ ( sin(φm − c) + 1

2
)
a

+ b, (2)

where a ≥ 1 is the steepness factor, b ∈ [0,1] is the minimum
amplitude, c > 0 is the horizontal distance between π/2
to π, and all parameters are related to the specific circuit
implementation. We call β(φm) in (2) as approximated phase-
depended amplitude.

(a) Approximated PDA model. (b) Different b and a.

Fig. 3: Approximated PDA model validations and the impacts
by different parameters a and b. Other electrical parameters
can be found in [8].

Fig. 3a shows the relationship between phase shift φm ∈
[− π

2
− c, π

2
+ c] and reflected amplitude β(φm) ∈ [b,1]. When

φm approaches ±(π
2
+c), the amplitude β(φm) is maximized.

This is because the reflective currents are out-of-phase with
the element currents. Accordingly, when φm = −π

2
+ c2,

the amplitude is minimized to b since the dielectric and
metallic losses increase. From Fig. 3b, it can be observed
that the minimum amplitude b is more important than the
other parameters3, i.e., a and c. We then have a proposition
as follows.

2It’s worth mentioning that there is no negative phase in reality, thus for
φm, the actual phase shift should add 2kπ where k is a non-negative integer.
However, we omit 2kπ in this paper.

3For example, when b is fixed to 0.5, the PL between a = 1.6 and 2 is just
0.2 dB. However, if a equals 2, the PL between b = 1 and 0.5 is 3.2 dB.
More details can be found in [8].



Proposition 1 (Lower and upper bounds of the ideal PDA):
When the pixel hardware and the phase shift are ideal, then
the lower and upper bounds of β(φm) in (2) can be obtained
as

b
(i)
≤ β(φm)∣

a>1

(ii)
≤ β(φm)∣

a=1

(iii)
≤ 1. (3)

Proof : First, when φm = −π
2
+ c, (i) holds equality.

Similarly, (ii) is the equal sign when β(φm) is minimized
(maximized). Besides, since sin(φm−c) ∈ [0,1] and b ∈ [0,1],
it is not difficult to verify that (iii) is correct, hence we finish
the proof. ∎

Remark 1: Previous works assumed full pixel reflections,
which cannot be obtained in reality. Instead of focusing on
β(φm)∣

a>1
, b and 1, we mainly study β(φm)∣

a=1
in the rest

of this paper, and this can be regarded as a special case of
the proposed model β(φm). Consequently, we assume in the
remaining part of this paper that β̄(φm) = β(φm)∣

a=1
. Given

that a is less significant relative to other parameters, β̄(φm)
is indicative of the predominant characteristic of β(φm).

III. IMPACTS BY INTRODUCING PHASE ERRORS INTO
PHASE-DEPENDENT AMPLITUDES

In Sec. II, we introduce the RIS pixel hardware structure
and its approximated equivalent model. In practice, however,
the PE can not be ignored since it not only present in
the PSE but also a significant factor in the PDA. The PE
is caused by multiple internal and/or external reasons such
as hardware degradations, channel estimations, and human-
induced accidents [5]–[7], [11]. Hence, in this section, we
delve into the last three scenarios outlined in Table I, with
a particular focus on the implications of integrating the PE
with the PDA, i.e., Case III.

A. Phase Errors in RIS Pixels

We assume that the PE δm in the m-th pixel follows a uni-
form distribution4, i.e., δm ∼ UF[−x,x], where x ∈ [0, π/2],
and the probability density function is f(δm) = 1

2x
when

δm ∈ [−x,x] or is zero otherwise. Then the practical pixel
reflection coefficient is5 β(φm + δm) exp(−(φm + δm)).

Suppose there is an RIS with M pixels and each transceiver
equips a single isotropic antenna. The whole power that
is emitted from the RIS can be obtained as PRIS =
∣∑Mm=1

√
PAP→mβ(φm + δm) exp(−(φm + δm))∣2. Consider

we have perfect channel state information, then the PSE
exp(−(φm + δm)) is equivalent to exp(−δm). Hence PRIS

can be rewritten as

4Normally there are two types of PE in the RIS pixel [5], i.e., imperfect
phase estimations and quantization errors, which respectively follow von
Mises and uniform distributions. This paper considers the latter since we
study from a hardware perspective.

5This paper assumes the PSE and the PDA share the same PE δm. However,
based on Fig. 6d, if these two components have independently and identically
distributed (i.i.d.) δm, the performance degradation will be more pronounced.
This is left open for future investigations.

PRIS = ∣
M

∑
m=1

√
PAP→m

PDA
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
β(φm + δm

P̄E

)

PSE
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
exp(− δm

P̄E

) ∣
2

(i)≈ PAP→m∣
M

∑
m=1

β(φm + δm) exp(−δm)∣
2

(ii)≈ M2PAP→m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Square Law

∣E{β(φm + δm) exp(−δm)}∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Power Loss Γ ∈ (0,1)

, (4)

where (i) and (ii) are respectively obtained when the pixels
receive the same transmit power and M ≫ 1.

Remark 2: It can be seen that (4) contains two parts. The
first one, i.e., M2PAP→m, reveals that the total power emitted
from the RIS PRIS increases directly proportional to M2. This
behavior is also called square law in the RIS communication
[13]. Moreover, the second part cannot be ignored especially
when we consider a practical RIS system. Previous works only
considered the PSE loss, i.e., ∣E{exp(−δm)}∣2. In the rest of
this paper, we consider Γ = ∣E{β(φm + δm) exp(−δm)}∣2 as
a more practical one. Besides, it is important to note that
φ1 ≠ φ2 ≠ ⋯ ≠ φM given that each pixel experiences its
own cascaded fading channel in practice, thus it is difficult
to obtain a satisfied approximation of Γ in (4). However, we
can let φ1 = φ2 = ⋯ = φM = φm when we want to study the
general impact of a specific δm on PRIS.

B. Case I: When the Amplitude is a Constant

When the PDA of the m-th pixel is a constant, we then
have the PL approximation as follows.

Proposition 2 (βm exp(−δm), the PDA is a constant):
When the m-th PDA is a constant β, and the PSE includes
δm ∼ UF[−x,x] where x ∈ [0, π

2
], then the PL Γ can be

obtained as

Γ1 = ∣E{βm exp(−δm)}∣2

(i)≈ β2(1 − 1

3
x2 + 2

45
x4 − 1

360
x6 + 1

14400
x8), (5)

where (i) is attained when β1 = β2 = ⋯ = βm = β and (5)
diminishes when x increases.

Proof : Please see Appendix A. ∎
Remark 3: Fig. 4a reveals that approximating Γ in Case

I needs at least the first three terms of the Taylor series
expansion of sin(x) in Appendix A. The imperfect analytical
(AN) case in the figure uses sin(x) ≈ x − 1

6
x3 + o(x5).

However, it is not accurate as x approaches π
2

, which leads
to a mismatch between AN and Monte Carlo (MC) results.

C. Case II: When the Amplitude is without Phase Errors

When the PDA of the m-th pixel is not a constant and
without δm, we have the upper bound of the PL as follows.

Proposition 3 (β(φm) exp(−δm), the PDA is PE-free):
When the m-th PDA is β(φm) and without any PEs, and the
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(d) Cases III with φm = π
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Fig. 4: The PL Γ in Cases I, II, and III with φm = π or π
2

,
b = 0.2, and c = 0.43π. The realization number is 5000.

PSE includes δm ∼ UF[−x,x] where x ∈ [0, π
2
], then the

upper bounds of the PL can be obtained as

Γ2 ≤ Γupper
2 ≈ ζ(1 − 1

3
x2 + 2

45
x4 − 1

360
x6 + 1

14400
x8), (6)

where Γ2 = ∣E{β(φm) exp(−δm)}∣2, Γupper
2 =

∣E{β̄(φm) exp(−δm)}∣2, ζ = (1−b)2

4
sin2(φm − c) +

(1−b2)
2

sin(φm − c) + (1+b)2

4
, and (6) decreases when x

increases.
Proof : Please see Appendix B. ∎
Remark 4: It is not difficult to find that b2 ≤ ζ ≤ 1, and

b2 and 1 can be obtained respectively when φm = −π
2
+ c and

±(c + π
2
). Hence, the minimum upper bound of the PL only

depends on b. Besides, Fig. 4b reveals that when x approaches
0, a = 1 outperforms others, but they are almost the same when
x approaches π

2
. In other words, a in (2) is not that important

especially when the PE δm becomes more serious.

D. Case III: When the Amplitude is with Phase Errors

When the PDA of the m-th pixel is not a constant and with
δm, we have the upper bound of the PL as follows.

Proposition 4 (β(φm + δm) exp(−δm), the PDA is with
the PE): When the m-th PDA is β(φm + δm), and the PDA
and the PSE all contain δm ∼ UF[−x,x] where x ∈ [0, π

2
],

then the upper bound of the PL can be obtained as

Γ3 ≤ Γupper
3 ≈ (η1 + η2)2 + η3, (7)

where Γ3 = ∣E{β(φm + δm) exp(−δm)}∣2, Γupper
3 =

∣E{β̄(φm+δm) exp(−δm)}∣2, η1 = (1−b)2
sin(φm−c)(1− 1

3
x2+

1
15
x4), η2 = (1+b)

2
(1 − 1

6
x2 + 1

120
x4), and η3 = (1−b)

2

4
( 1

3
x2 −

1
15
x4)2

cos2(φm − c), and (7) decreases with increasing x.
Proof : Please see Appendix C. ∎
Remark 5: From Fig. 4c, it can be seen that the PL

differences between a = 1,2 and 3 are obvious. This is because
Case III is not only influenced by the PE exp(−δm) but also,
more importantly, by the PDA β(φm+δm). Besides, when the
amplitude is large (e.g., φm = π

2
+ c), the impact of the PE δm

on the PDA is more significant. Fig. 4d shows Case III with
φm = π

4
, and it can be seen that the PL of a = 1,2 and 3 are

all small and they are not influenced by δm very seriously.
Besides, the mismatches between the AN and MC results in
Fig. 4c and 4d are caused by using the Taylor expansion at
x = 0 in Appendix. C.

IV. CHANNEL MODEL AND NUMERICAL EVALUATIONS

In this section, we first give a LoS channel model of the NF
RIS-aided communication considering the PDA with the PE.
Then we offer numerical evaluations to show the correctness
of our results.

A. Channel Model

Consider a single-input single-output RIS-aided system that
includes an access point (AP), a user, and an RIS. The direct
link is blocked, the RIS is a planar surface on a rectangular
grid spaced dx and dy apart in the xoy-plane of a three-
dimensional Cartesian coordinate system where o denotes
the origin point, and the sizes and the geometric center of
the RIS are

√
M ×

√
M and [0, r,0]T, respectively. Besides,

we set dx = dy = λ/2 to avoid spatial correlations [4],
where λ is wavelength. The position of the AP and user are
DAP = [xAP, yAP, zAP]T and DUser = [xUser, yUser, zUser]T,
respectively. Then the distances between the AP and the m-
th element and between the m-th element and the user can
be respectively obtained as dAP→m = ∥Dm − DAP∥ and
dm→User = ∥Duser − Dm∥ where Dm is defined in [11].
Accordingly, the time delays are τAP→m = dAP→m/ν and
τuser
m = duser

m /ν, respectively, where ν denotes the speed of
light. Using Friis transmission formula [17], for the AP-to-
pixel path, we have

PAP→m

PAP
= ( λ

4πdAP→m
)

2

GAPGAP→m, (8)

where PAP→m is the received power of the m-th RIS pixel,
which is part of the power that is emitted from the AP, i.e.,
PAP. Besides, GAP and GAP→m are the AP antenna gain and
the m-th pixel gain from the direction of the AP. Similarly,
for the pixel-to-user path, we have

Pm→User

Pm
= ( λ

4πdm→User
)

2

GUserGm→User, (9)

where Pm→User is the received power of the user, which is
part of the power that is emitted from the m-th RIS element,
i.e., Pm. It is worth noting that based on (1), the pixel is
with the PE and the PDA. Hence PAP→m ≥ Pm. Besides,



GUser and Gm→User are the user antenna gain and the m-th
pixel gain from the direction of the user, and 6 GAP→m =
4π
λ2 dxdy cos(θAP→m) and Gm→User = 4π

λ2 dxdy cos(θm→User)
where θAP→m ∈ (0, π

2
) and θm→User ∈ (0, π

2
), and GAP =

GUser = 1. Thus the received signal y can be obtained as

y = h ⋅
√
PAP ⋅ s + ω, (10)

where h = ∑m gmβ(φm + δm) exp(−(φm + δm))hm, the
m-th LoS channel of the AP-to-pixel and the pixel-to-user
paths are respectively gm = AAP→m exp(−2πfcτAP→m)
and hm = Am→User exp(−2πfcτm→User), fc is carrier fre-
quency, AAP→m = λ

4πdAP→m

√
π cos(θAP→m), and Am→User =

λ
4πdm→User

√
π cos(θm→User). Besides, s is an unit-power sig-

nal symbol, and ω ∼ CN (0, σ2) denotes additive white
Gaussian noise with the variance σ2, then the SE can be
obtained as

SE = E{ log2 (1 + PAP ⋅ ∣h∣2
σ2

)}. (11)

B. Numerical Evaluations

(a) Γ1 vs. Γupper
2 . (b) Γupper

2 vs. Γupper
3 .

Fig. 5: 3D illustrations comparing different PLs. Note that
b = 0.2 and c = 0.43π.

First, we presents 3D illustrations comparing different PLs
in Fig. 5. In particular, from Fig. 5a, it can be observed that
Γ1 and Γupper

2 have different 3D patterns. This is because Γ1

contains the fixed amplitude, rather than the PDA, which is
included in Γupper

2 . Fig. 5b shows that the error in the PDA
brings an extra performance degradation, and this decrease be-
comes more serious when φm approaches ±(π

2
+c). However,

when φm = −π
2
+ c, all PLs can be ignored.

Secondly, we show how much the PDA (with/without the
PE) decrease SE in a realistic setting. Assume the RIS is on
the xoy-plane shown in Fig. 1, and it moves slowly from a
location near the AP to close the user. The simulation setup
parameters are DAP = [−8,15,8]T m, DUser = [8,1.5,8]T m,
the center of RIS is [xRIS,10,0]T m where xRIS ∈ [−8,8] m.
Besides, PAP = 20 dBm, σ2 = −80 dBm, fc = 2.4 GHz, the
pixel number7 M = 2002, the realization number is 5000, and
Doppler effect is ignored.

6We employ cos(⋅) as the NF pixel gain function in this paper.
7While M = 200 is sufficient to demonstrate the benefits of the RIS [12],

we choose a larger value for M in this study to ensure a typical NF scenario
[3] and to obtain more compelling Monte Carlo results.
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(d) b = 0.6. δm = π
2

and γm = π
2

are i.i.d.

Fig. 6: SE for the moving RIS from the AP to the user. Note
that a = 1, c = 0.43π, and γm is the PE that exists in the PDA.

Fig. 6a shows that Case III performs worst since it considers
the PSE and the PDA (with the PE) and their mutual coupling
loss. Case II also contains the PSE but the PDA operates
without errors. Accordingly, Case I performs better than II
and III, this is because it only considers the PSE and β ≡ 1.
The case without the PSE and the PDA, i.e., the first model
in Table I, is the error-free baseline. Figure 6b shows that a
smaller b in (2) leads to reduced SE. All SEs first decrease and
then increase since the RIS performs worst when it is located
in the middle between the AP and the user [12]. Fig. 6c shows
that the cases with δm = π

4
and π

3
perform better than with π

2
,

as expected. Lastly, when the PE γm in the PDA and δm are
i.i.d., the performance is the worst, as Fig. 6d illustrates.

V. CONCLUSION

This paper has studied the mutual coupling effect of the PSE
and the PDA with the PE in the RIS-assisted system. The main
findings are 1) the PE exists not only in the PSE but also in the
PDA, 2) the PE has a more serious impact when the phase shift
is far away from the minimal phase and vice versa, and 3) i.i.d.
PEs in the PSE and the PDA bring additional uncertainties.
Future research prospects include integrating Rician channel
modeling the PDA contains the PE, deriving analytical upper
bounds on the PL assuming i.i.d. PEs in both the PDA and the
PSE, obtaining a closed-form expression of the SE considering
the proposed channel model, analyzing the case that the PE
follows Von Mises distribution, and comparing the different
impacts of the mutual coupling on NF and FF RISs.

APPENDIX A
PROOF OF PROPOSITION 2

Because the PDA is a constant βm, then the second part of
(4) can be rewritten as ∣E{βm exp(−δm)}∣2. Note that βm is



not a random variable and exp(−δm) = cos(δm)−  sin(δm),
thus we have

∣E{βm exp(−δm)}∣2

= ( 1

M

M

∑
m=1

βm)
2

∣∫
x

−x
cos(δm)f(δm)dδm∣

2

. (12)

Recall that we defined f(δm) = 1
2x

in Sec. III-A., then

∫
x
−x cos(δm)f(δm)dδm = 1

2x ∫
x
−x cos(δm)dδm = sin(x)

x
. There-

fore, ∣E{βm exp(−δm)}∣2 = ( 1
M ∑Mm=1 βm)2( sin(x)

x
)2

. Lastly,
by using Taylor series expansion sin(x) = x − 1

6
x3 + 1

120
x5 +

o(x7) [18], (5) is obtained. Consequently, we have

∂

∂x
{∣E{βm exp(−δm)}∣

2

}

≈ ( 1

M

M

∑
m=1

βm)
2

( − 2

3
x + 8

45
x3 − 1

60
x5 + 1

1800
x7). (13)

Let (13) < 0, we have x ∈ (0,3.162)⋃(−∞,−3.162). Note
that x ∈ (0, π

2
) ⊂ (0,3.162), then we can see that the phase

error δm decreases (5). In other words, when x increases, (5)
decreases.

APPENDIX B
PROOF OF PROPOSITION 3

Based on the equivalent phase shift model in Sec. II., we can
find that (2) reaches the upper bound when a = 1. Therefore,
we have ∣E{β(φm) exp(−δm)}∣2 ≤ ∣E{β̄(φm) exp(−δm)}∣2.
Then ζ = ( (1−b)

2
sin(φmn − c) + (1+b)2

)2
and ∂

∂x
{∣E{β̄(φm) ⋅

exp(−δm)}∣2} ≈ ζ(− 2
3
x + 8

45
x3 − 1

60
x5 + 1

1800
x7). The rest

proof is similar to Appendix A.

APPENDIX C
PROOF OF PROPOSITION 4

From Appendix B, it can be seen that we only
need to study the case with a = 1, thus ∣E{β̄(φm +
δm) exp(−δm)}∣2 = ∣ 1

2x ∫
x
−x β̄(φm + δm) cos(δm)dδm −


2x ∫

x
−x β(φm + δm) sin(δm)dδm∣2. Note that ∫

x
−x β(φm +

δm) cos(δm)dδm = (1−b)
2

sin(φm − c)(x + 1
2

sin(2x)) + (1 +
b) sin(x), and ∫

x
−x β(φm + δm) sin(δm)dδm = (1−b)

4
(2x −

sin(2x)) cos(φm − c). Hence (7) can be obtained easily. Con-
sequently, without loss of generality, we assume sin(φm−c) =
0, then ∣E{β̄(φm + δm) exp(−δm)}∣2 ≈ (1+b)2

4
(1 − 1

6
x2 +

1
120

x4)2 + (1−b)
2

4
( 1

3
x2 − 1

15
x4)2

. Hence we have

∂

∂x
{∣E{β̄(φm + δm) ⋅ exp(−δm)}∣

2

}

= − (1 + b)2

6
x + %1x

3 − %2x
5 + %3x

7, (14)

where %1 = 2(1+b)2+5(1−b)2

45
, %2 = (1+b)2+16(1−b)2

240
, and %3 =

(1+b)2+64(1−b)2

7200
. Let (14) equals 0, and recall b ∈ [0,1], then

for x ∈ [0, π
2
], there is only one real solution x = 0. Because

of the continuity [18], for b ∈ [0,1], the only real solution is
also x = 0. Other real roots are x2 = −2.286 and x3 = 2.286
if b = 0. It is not difficult to verify that when x ∈ (0, x3 =
2.286)⋃(−∞, x2 = −2.286), (14) < 0, and (0, x3 = 2.286) ⊃
(0, π

2
). Similarly, the cases that b ∈ (0,1] and sin(φm − c) < 0

(sin(φm−c) > 0) can be analyzed as the case above. The proof
is completed.
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