Multi-RIS-Assisted High-Speed Communication System with Doppler Mitigation and Hardware Impairments

Ke(Ken)Wang, PhD Candidate

(E-mail: ke.wang@ipm.edu.mo)

12 April 2022

The Macao Polytechnic Institute will be renamed as the Macao Polytechnic University from 1st March 2022

Macao Polytechnic Institute → Macao Polytechnic University

School of Applied Sciences → Faculty of Applied Sciences

http://www.mpu.edu.mo

Outline

- ☐ Part 1: Introduction and Motivation
 - Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - > Doppler Mitigation, Phase Optimization, and Deployment
 - Spectral and Energy Efficiency
 - Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Part 1

- ☐ Part 1: Introduction and Motivation
 - Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - > Doppler Mitigation, Phase Optimization, and Deployment
 - Spectral and Energy Efficiency
 - > Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

5G Era is Comina

- □ Ultra-Dense Network (UDN). □ Multiple-Input Multiple-Output (MIMO). □ millimeter Wave (mmWave). [2]

- ☐ Energy Consumptions.
- ☐ Hardware Costs.

What is New in 6G?

- □ Promising 6G Paradigm: Smart Radio Environments (SRE).
- □ SRE: An electromagnetic environment that is generated by nature but is programmable and controllable by our design.

$$C = \log_2 \left(1 + \frac{(\sqrt{H})^2 P}{\sigma^2} \right) \qquad \text{(13)} \quad \text{(13)} \quad \text{(14)} \quad \text{(15)} \quad \text{(15$$

- □ Key Technology: Reconfigurable Intelligent Surfaces (RIS).
 - > Reconfigurable: can be redesigned.
 - > Intelligent: inexpensive adaptive.
 - > Surfaces: not necessarily planar.

What is RIS?

We can control \sqrt{H} $y_n=x_n \ \widehat{eta_n}e^{j heta_n}$ Where $eta_n\!\in\![0,1],\ heta_n\!\in\![0,2\pi],$ and $n\!=\!1,...,N.$

□ RIS is a kind of metal surface that is made up of many sub-wavelength passive reflecting elements, each of which can cause amplitude and/or phase shift on the incident signal, in real-time, independently.

An RIS-Assisted Communication Model

Part 1

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - > Doppler Mitigation, Phase Optimization, and Deployment
 - Spectral and Energy Efficiency
 - > Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Main Issues of High-Speed Communications

□ Significant Signal Penetration Losses.

☐ Time-Varying Channel Modeling.

☐ Time-Varying Channel Estimation.

□ Doppler Effect Compensation.

□ Blockages of LoS Channel.

 \square ...

Table. 1 The penetration loss (dB) of typical high-speed trains [5]

Train Type	Train Material	Penetration Loss (dB), $f_c = 1.8 \text{ GHz}$
Normal Train	Iron	12 ~ 15
Bombardier	Stainless Steel	$20 \sim 24$
Alstom	Aluminium Alloy	$22 \sim 24$

Table. 2 Maximum Doppler shift (Hz) at different carrier frequency and speeds [6]

f_c (GHz)	200	300	400	500
0.9	167	250	330	417
1.8	333	500	667	833
2.6	481	722	962	1204

Alstom high-speed train on the Gotthard railway [7]

RIS Can Help High-Speed Communications

- ☐ Increase signal gain and reduce the penetration loss.
- □ Combat the blockage of communications.
- □ Solve the Doppler effect and multipath fading problems.
- □ Bring high energy efficiency.

[8]

Hardware Impairments in RIS-Assisted High-Speed Communications

- □ The 1st kind: RIS Hardware Impairments (intrinsic hardware imperfection, imperfect CSI, quantization error, etc.).
- □ The 2nd kind: Transceivers Hardware Impairments (additive distortion noise, phase drift, amplified thermal noise, etc.).
- ☐ The 3rd Kind: Hardware Aging (time-related hardware degradation).
- □ ...

Part 2

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - > Doppler Mitigation, Phase Optimization, and Deployment
 - Spectral and Energy Efficiency
 - > Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Abstract

Multi-RIS-Assisted High-Speed Communication
System with Doppler Mitigation and Hardware
Impairments

Ke Wang, Graduate Student Member, IEEE, Chan-Tong Lam, Member, IEEE, and Benjamin K. Ng, Member, IEEE

Submitted to IEEE Transaction on Vehicular Technology, under view.

- I The main concept of this paper is that we use multiple RISs to explore their potential for Doppler mitigation and spectral/energy efficiency enhancement.
 - We present a general multi-RIS-assisted system model for HSC with HWI;
 - We obtain a phase shift set that can maximize SE, remove Doppler spread, and keep delay spread at a very low level;
 - We derive a closed-form expression of SE and obtain an optimal transmit power that can maximize energy efficiency;
 - We compare performances of the single and multiple RISs.

System Model(1/4): General Setting

Fig. 1. A multi-RIS-assisted high-speed communication system. K=2.

16

System Model (2/4): without HWI

$$S_{0}(t) = A_{0}(t) \{ \sqrt{P_{t}} x [t - \tau_{0}(t)] \}$$

$$S_{i_{m},i_{n}}(t) = A_{i_{m},i_{n}}(t) \{ \sqrt{P_{t}} x [t - \tau_{i_{m},i_{n}}(t) - \frac{\phi_{i_{m},i_{n}}(t)}{2\pi f_{c}}] \}$$

$$Y(t) = S_{0}(t) \Theta_{0}(t) + \sum_{i=1}^{K} \sum_{i_{m}=1,i_{n}=1}^{M,N} S_{i_{m},i_{n}}(t) \Theta_{i_{m},i_{n}}(t) + w(t)$$

$$\Theta_{0}(t) \triangleq e^{-j2\pi f_{c}\tau_{0}(t)}$$

$$\Theta_{i_{m},i_{n}}(t) \triangleq e^{-j2\pi f_{c}\tau_{i_{m},i_{n}}(t) - j\phi_{i_{m},i_{n}}(t)}$$

Cascaded Link

System Model (3/4): Two Kinds of HWIs

□ RIS Hardware Impairments (intrinsic hardware imperfection, imperfect CSI, quantization error, etc.)

$$\Lambda_{i_m,i_n}(t) \stackrel{ riangle}{=} e^{j\gamma_{i_m,i_n}(t)}$$
 where $\gamma_{i_m,i_n}(t) \sim \mathcal{U}[-a_{ ext{HWI}},a_{ ext{HWI}}]$

☐ Transceivers Hardware Impairments (additive distortion noise, amplified thermal noise, etc.)

$$\eta_t(t) \sim \mathcal{CN}(0,\Upsilon_t), \qquad \qquad \eta_r(t) \sim \mathcal{CN}(0,V_r),$$

where Υ_t is the transmit power. where V_r is the received power.

System Model (4/4): with HWI

$$S_{0}^{\mathrm{HWI}}(t) = A_{0}(t) \{ \sqrt{P_{t}} x [t - \tau_{0}(t)] + \eta_{t}(t) \}$$

$$\Theta_{0}(t) \stackrel{\triangle}{=} e^{-j2\pi f_{c}\tau_{0}(t)}$$

$$M_{i_{m},i_{n}}(t) \stackrel{\triangle}{=} e^{j\gamma_{i_{m},i_{n}}(t)}$$

$$Y^{\mathrm{HWI}}(t) = S_{0}^{\mathrm{HWI}}(t) \Theta_{0}(t) + \sum_{i=1}^{K} \sum_{i_{m}=1,i_{n}=1}^{M,N} S_{i_{m},i_{n}}^{\mathrm{HWI}}(t) \Theta_{i_{m},i_{n}}(t) \Lambda_{i_{m},i_{n}}(t) + \eta_{r}(t) + w(t)$$

$$\Theta_{i_{m},i_{n}}(t) \stackrel{\triangle}{=} e^{-j2\pi f_{c}\tau_{i_{m},i_{n}}(t) - j\phi_{i_{m},i_{n}}(t)}$$

$$S_{i_{m},i_{n}}^{\mathrm{HWI}}(t) = A_{i_{m},i_{n}}(t) \{ \sqrt{P_{t}} x [t - \tau_{i_{m},i_{n}}(t) - \frac{\phi_{i_{m},i_{n}}(t) - \gamma_{i_{m},i_{n}}(t)}{2\pi f_{c}}] + \eta_{t}(t) \}$$

Part 2

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - > Abstract and System Model
 - Doppler Mitigation, Phase Optimization, and Deployment
 - Spectral and Energy Efficiency
 - > Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Delay Spread

□The delay spread of the i-th RIS is the maximum difference in propagation time overall the two significant transmission paths, i.e.,

$$T_i(t) = \max\{T_{0i}(t), T_{RISi}(t)\},$$

where
$$T_{0i}(t) = \max_{i_n,i_n} \{ au_{i_n,i_n}(t) + rac{\phi_{i_n,i_n}(t) - \gamma_{i_n,i_n}(t)}{2\pi f_c}\} - au_0(t)$$
 and

$$T_{ ext{RIS}\,i}(t) = \max_{i_n,i_n} \{ au_{i_n,i_n}(t) + rac{\phi_{i_n,i_n}(t) - \gamma_{i_n,i_n}(t)}{2\pi f_c}\} - \min_{i_{m'},i_{n'}} \{ au_{i_{m'},i_{n'}}(t) + rac{\phi_{i_{m'},i_{n'}}(t) - \gamma_{i_{m'},i_{n'}}(t)}{2\pi f_c}\}.$$

☐ Therefore, at time t, the delay spread for the K RISs is

$$T(t) = \max_{i} \{T_i(t)\}, i = 1, 2, ..., K.$$

Doppler Spread

□The Doppler spread of the i-th RIS is the maximum difference in instantaneous frequency overall the two significant transmission paths, i.e.,

$$D_i(t) = \max\{D_{0i}(t), D_{RISi}(t)\},$$

where
$$D_{0i}(t) = f_c \max_{i_n,i_n} |rac{d}{dt}(au_{i_n,i_n}(t) + rac{\phi_{i_n,i_n}(t) - \gamma_{i_n,i_n}(t)}{2\pi f_c}) - rac{d}{dt} au_0(t)|$$
 and

$$D_{\mathrm{RIS}\,i}(t) = f_c \max_{i_{\scriptscriptstyle m},i_{\scriptscriptstyle n},i_{\scriptscriptstyle m'},i_{\scriptscriptstyle n'}} |\frac{d}{dt}(\tau_{i_{\scriptscriptstyle m},i_{\scriptscriptstyle n}}(t) + \frac{\phi_{i_{\scriptscriptstyle m},i_{\scriptscriptstyle n}}(t) - \gamma_{i_{\scriptscriptstyle m},i_{\scriptscriptstyle n}}(t)}{2\pi f_c}) - \frac{d}{dt}(\tau_{i_{\scriptscriptstyle m'},i_{\scriptscriptstyle n'}}(t) + \frac{\phi_{i_{\scriptscriptstyle m'},i_{\scriptscriptstyle n'}}(t) - \gamma_{i_{\scriptscriptstyle m'},i_{\scriptscriptstyle n'}}(t)}{2\pi f_c})|.$$

☐ Therefore, at time t, the Doppler spread for the K RISs is

$$D(t) = \max_{i} \{D_i(t)\}, i = 1, 2, ..., K.$$

Doppler Shift

□The Doppler shift for the direct link is

$$DS_0(t) = -f_c \frac{d}{dt} \{ \tau_0(t) \}.$$

☐ The Doppler shift for the i-th RIS link is

$$DS_i(t) = -\max_i \{|DS_{i_{m,n}}(t)|\}, \quad i = 1, 2, ..., K,$$

where
$$DS_{i_{\!\scriptscriptstyle m,n}}(t) = - f_c rac{d}{dt} \{ au_{i_{\!\scriptscriptstyle m},i_{\!\scriptscriptstyle n}}(t) + rac{\phi_{i_{\!\scriptscriptstyle m},i_{\!\scriptscriptstyle n}}(t) - \gamma_{i_{\!\scriptscriptstyle m},i_{\!\scriptscriptstyle n}}(t)}{2\pi f_c} \}.$$

☐ Therefore, at time t, the Doppler shift for the K RISs is

$$DS(t) = -\max_{i} \{|DS_0(t)|, |DS_i(t)|\}, i = 1, 2, ..., K.$$

Phase Optimization (1/4)

☐ The optimal phase shift should be designed to align the phases of direct and cascaded link, then we have

$$\phi_{i_m,i_n}(t) = 2\pi f_c(au_0(t) - au_{i_m,i_n}(t)) + 2\pi k_{i_m,i_n}(t),$$

where $k_{i_m,i_n}(t)$ is additional full carrier signal period delay in the m,n-th element on the i-th RIS.

- lacksquare If $k_{i_m,i_n}(t) \geq \lceil f_c(au_{i_m,i_n}(t) au_0(t))
 ceil$ and $k_{i_m,i_n}(t) \in \mathbb{Z}_0^+$, the received power can be maximized.
- □ Also, the Doppler spread will be removed.

Phase Optimization (2/4)

☐ However, the delay spread would be obtained as

$$T(t) = \max_{i} \{T_i(t)\}, i = 1, 2, ..., K,$$

where
$$T_i(t) = \max_{i_n,i_n} \{ au_{i_n,i_n}(t) + rac{k_{i_n,i_n}(t)}{f_c} - rac{\gamma_{i_n,i_n}(t)}{2\pi f_c}\} - au_0(t).$$

- lacksquare Therefore, T(t) can be affected by $k_{i_m,i_n}(t)$ and $\gamma_{i_m,i_n}(t)$.
- ☐ In other words, the phase shift set and the hardware impairment of the RIS can increase the delay spread.
- lacksquare So $k_{i_m,i_n}(t)$ should be as small as possible, i.e.,

$$k_{i_{\hspace{-.1em}m},\,i_{\hspace{-.1em}n}}\!\left(\hspace{.05em}t\hspace{.1em}
ight)\!=\!\!\lceil f_{\hspace{-.1em}c}\!\left(\hspace{.05em} au_{i_{\hspace{-.1em}m},\,i_{\hspace{-.1em}n}}\!\left(\hspace{.05em}t\hspace{.1em}
ight)\!-\! au_{\hspace{-.1em}0}\!\left(\hspace{.05em}t\hspace{.1em}
ight)
ceil$$

 \square $\gamma_{i_n,i_n}(t)$ cannot be removed, i.e., HWI increases the delay spread.

Phase Optimization(3/4)

☐ The Doppler shift of the m,n-th element of the i-th RIS after RIS phase optimization is

$$DS_{i_{\!\scriptscriptstyle m,n}}(t) \!=\! -f_c rac{d}{dt} \{ au_0(t) + rac{k_{i_{\!\scriptscriptstyle m},i_{\!\scriptscriptstyle n}}(t)}{f_c} - rac{\gamma_{i_{\!\scriptscriptstyle m},i_{\!\scriptscriptstyle n}}(t)}{2\pi f_c} \}.$$

☐ Therefore, RIS cannot remove Doppler shift if direct link exists.

☐ In other words, if the system only has the cascaded link, then the Doppler shift is zero.

Phase Optimization(4/4)

□ Comparison between different phase shift set

$$\phi_{i_m,i_n}(t) = 2\pi f_c(au_0(t) - au_{i_m,i_n}(t)) + 2\pi k_{i_m,i_n}(t),$$
 and

Strategy	Result	
$k_{i_m,i_n}(t) \in \mathbb{R}$ and		
$k_{i_m,i_n}(t) > f_c(\tau_{i_m,i_n}(t) - \tau_0(t))$	Cannot $\max\{P_R(t)\}$ or Remove $D(t)$	
$k_{i_m,i_n}(t) \in \mathbb{Z}_0^+$ and		
$k_{i_m,i_n}(t) > \lceil f_c(\tau_{i_m,i_n}(t) - \tau_0(t)) \rceil$	$\max\{P_R(t)\}$, Remove $D(t)$	
$k_{i_m,i_n}(t) = \lceil f_c(\tau_{i_m,i_n}(t) - \tau_0(t)) \rceil$	$\max\{P_R(t)\}$, Remove $D(t)$, and $\min\{T(t)\}$	

Deployment Strategy and Delay Spread

- ☐ The delay spread is the smallest if the distance of cascaded link is the smallest.
- ☐ The delay spread of the system with the K RISs only depends on the RIS that is the farthest to the BS.

Part 2

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - Doppler Mitigation and Phase Optimization
 - Spectral and Energy Efficiency
 - Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Spectral Efficiency

Theorem 2: Assume the system with K identical RISs, each of which uses the sub-optimal phase shift $\phi_{i_m,i_n}(t)$, and $\gamma_{i_m,i_n}(t) \sim \mathcal{U}\big[-a_{\mathrm{HWI}},a_{\mathrm{HWI}}\big]$, where $a_{\mathrm{HWI}} \in [0,\pi/2]$. Then, at time t and for large value of the total number of elements $\Psi \triangleq KMN$, the downlink spectral efficiency of the multi-RIS-assisted Doppler mitigation system with HWI can be obtained as

$$\mathrm{SE}(t) \stackrel{a.s.}{\longrightarrow} \log_2 \{1 + rac{\mathcal{Q}(t)}{(\kappa_t + \kappa_r)\mathcal{Q}(t) + N_0} \}, ext{ where}$$

$$\mathcal{Q}(t) \stackrel{a.s.}{\longrightarrow} P_t \{A_0^2(t) + \mathrm{sinc}^2(a_{\mathrm{HWI}})A^{\star}(t) + \sum_{i=1}^K \sum_{i_m=1,i_n=1}^{M,N} A_{i_m,i_n}^2(t) + 2A_0(t)\mathrm{sinc}(a_{\mathrm{HWI}}) \sum_{i=1}^K \sum_{i_m=1,i_n=1}^{M,N} A_{i_m,i_n}(t) \}, ext{ and } A^{\star}(t) = A_1(t) \sum_{i
eq 1}^\Psi A_j(t) + A_2(t) \sum_{i
eq 2}^\Psi A_j(t) + \cdots + A_{\Psi}(t) \sum_{i
eq \Psi}^\Psi A_j(t)$$

Part 2 - Energy Efficiency

Energy Efficiency

$$egin{align} \mathcal{P}_{ ext{total}}(t, P_t, \Psi) & ext{$\stackrel{\triangle}{=}$} rac{P_t}{
u} + P_{ ext{V}} + P_{ ext{BS}} + P_{ ext{RIS}} \ & = rac{P_t}{
u} + P_{ ext{V}} + P_{ ext{BS}} + \Psi P_e \ & egin{align} egi$$

$$\eta_{ ext{EE}}(t) = rac{B \cdot ext{SE}(t, extstyle{P_t})}{\mathcal{P}_{ ext{total}}(extstyle{P_t})}.$$

Part 2

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - Doppler Mitigation and Phase Optimization
 - > Spectral and Energy Efficiency
 - Simulation Results
- ☐ Part 3: Conclusions and Future Research Directions

Parameter Setting

In this section, numerical examples are provided to validate the results in Section III and IV. Based on Fig.2, assuming the BS is located at [-50 m, $h_{\rm BS}$ m, 20 m], and the vehicle is located at $[x_{\rm start} + v \cdot t$ m, $h_{\rm V}$ m, 200 m] where $t \in \mathbb{Z}_0^+$ and its range is from 1 s to 100 s. Without loss of generality, we assume all RISs are with zero z coordinate, i.e., $\Delta_i^z = 0$.

Parameters	Values
BS height $(h_{\rm BS})$	20 m
RIS height (h_{RIS})	15 m
Vehicle height $(h_{\rm V})$	1.5 m
Speed of the vehicle (v)	110 m/s
Start point of the vehicle (x_{start})	-5000 m
Total time for one vehicle pass	100 s
Transmit power (P_t)	30 dBm
Power spectral density (N_0)	-80 dBm/Hz
Carrier frequency (f_c)	2.4 GHz
Coherence Bandwidth (B)	180 KHz
Transmit power amplifier efficiency (ν)	0.5
Vehicle hardware static power consumption (P_{V})	5 dBm
BS hardware static power consumption (P_{BS})	5 dBm
Each element hardware static power consumption (P_e)	0.8 dBm
Rectangular grid spacing of the RIS (dx, dy)	$\lambda/2, \lambda/2$
Spacing of two inter-RISs	500 m
The x coordinate of the center of RIS1 (Δ_1^x)	0 m

Performance for Different Phase Shift Sets

$$\phi_{i_m,i_n}(t) = 2\pi f_c \left(\tau_0(t) - \tau_{i_m,i_n}(t) \right) + 2\pi k_{i_m,i_n}(t)$$

$$= 2\pi \left\{ f_c \left(\tau_0(t) - \tau_{i_m,i_n}(t) \right) + k_{i_m,i_n}(t) \right\}, \quad (29)$$

where $k_{i_m,i_n}(t) = \lceil f_c(\tau_{i_m,i_n}(t) - \tau_0(t)) \rceil$ and $\lceil \cdot \rceil$ denotes the ceiling of the argument.

Strategy	Result	
$k_{i_m,i_n}(t) \in \mathbb{R}$ and	Cannot $\max\{P_R(t)\}$ or	
$k_{i_m,i_n}(t) > f_c(\tau_{i_m,i_n}(t) - \tau_0(t))$	Remove $D(t)$	
$k_{i_m,i_n}(t) \in \mathbb{Z}_0^+$ and		
$k_{i_m,i_n}(t) > \lceil f_c(\tau_{i_m,i_n}(t) - \tau_0(t)) \rceil$	$\max\{P_R(t)\}$, Remove $D(t)$	
$k_{i_m,i_n}(t) = \lceil f_c(\tau_{i_m,i_n}(t) - \tau_0(t)) \rceil$	$\max\{P_R(t)\}$, Remove $D(t)$, and $\min\{T(t)\}$	

Delay Spread for Different Numbers of RIS

Spectral Efficiency for multi-RIS System with HWI

Multiple RISs vs. Single RIS for One Vehicle Pass

- □When the total number of elements is fixed, single-RIS near the BS is the best deployment strategy.
- □When the total number of elements increases, the SE increases.
- □Single-RIS cannot be too large.

Average Spectral and Energy Efficiency

- □The RIS with more elements, a higher SE but a lower EE would be obtained.
- □In order to achieve a balance between SE and EE, we should choose the total number of elements carefully.

Part 3

- ☐ Part 1: Introduction and Motivation
 - > Introduction of Reconfigurable Intelligent Surfaces (RIS)
 - Motivation of Using RIS in High-Speed Communication
- ☐ Part 2: Multi-RIS-Assisted High-Speed Communication
 - Abstract and System Model
 - Doppler Mitigation and Phase Optimization
 - Spectral and Energy Efficiency
 - > Simulation Results
- □ Part 3: Conclusion and Future Research Directions

Conclusion

- □ RIS can benefit from high-speed communication (SE/EE enhancement, Doppler spread elimination, etc.).
- □ HWI increases the delay spread and decreases the SE/EE.
- ☐ The delay spread of the system with the K RISs only depends on the RIS that is the farthest to the BS.
- ☐ The multiple RISs system is with a higher SE but a more serious delay spread.

Future Research Directions

- ☐ Hardware Aging of RIS-Assisted System.
- □ Doppler Diversity Generation using RIS.
- □ Cell-Free Massive MIMO Networks with RIS.
- □ Practical RIS-Assisted System Model.
- □ ...

Thanks, QA?

References

- [1] Huawei 5G Overview. [Online]. Available: www.huawei.com/minisite/5g/img/Huawei 5G Overview.pdf.
- [2] Q. Wu and R. Zhang, "Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming," IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394-5409, Nov. 2019.
- [3] M. Di Renzo et al., "Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450-2525, Nov. 2020.
- [4] Q. Wu and R. Zhang, "Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network," IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, 2020.
- [5] Y. Zhao, et al., "Applications of Reconfigurable Intelligent Surface in Smart High Speed Train Communications." arXiv preprint arXiv:2109.04354, 2021.
- [6] P. Fan, et al., "Advances in Anti-Doppler Effect Techniques for High Mobility Wireless Communications." Journal of Southwest Jiaotong University 51.3, 2016.
- [7] www.dreamstime.com.
- [8] J. Zhang et al., "RIS-Aided Next-Generation High-Speed Train Communications: Challenges, Solutions, and Future Directions," in IEEE Wireless Communications, vol. 28, no. 6, pp. 145-151, December 2021.
- [9] E. Björnson, et al., "Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications," in IEEE Signal Processing Magazine, vol. 39, no. 2, pp. 135-158, March 2022.

